|
|- |bgcolor=#e7dcc3|Coxeter diagrams|| or or or ↔ ↔ |- |bgcolor=#e7dcc3|Cells|| 40px 40px r 40px |- |bgcolor=#e7dcc3|Faces||triangular square |- |bgcolor=#e7dcc3|Vertex figure||80px rhombicuboctahedron |- |bgcolor=#e7dcc3|Coxeter group|| |- |bgcolor=#e7dcc3|Properties||Vertex-transitive, edge-transitive |} In the geometry of hyperbolic 3-space, the cube-octahedron honeycomb is a compact uniform honeycomb, constructed from cube, octahedron, and cuboctahedron cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells. == Images== Wide-angle perspective views: File:H3 4343-0010 center ultrawide.png|Centered on cube File:H3 4343-1000 center ultrawide.png|Centered on octahedron File:H3 4343-0001 center ultrawide.png|Centered on cuboctahedron It contains a subgroup H2 tiling, the alternated order-4 hexagonal tiling, , with vertex figure (3.4)4. : 240px 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Cubic-octahedral honeycomb」の詳細全文を読む スポンサード リンク
|